منابع مشابه
Rational Quartic Reciprocity
In 1985, K. S. Williams, K. Hardy and C. Friesen [11] published a reciprocity formula that comprised all known rational quartic reciprocity laws. Their proof consisted in a long and complicated manipulation of Jacobi symbols and was subsequently simplified (and generalized) by R. Evans [3]. In this note we give a proof of their reciprocity law which is not only considerably shorter but also she...
متن کاملRational Quartic Reciprocity Ii
for every prime p ≡ 1 mod 4 such that (p/pj) = +1 for all 1 ≤ j ≤ r. This is ’the extension to composite values of m’ that was referred to in [3], to which this paper is an addition. Here I will fill in the details of a proof, on the one hand because I was requested to do so, and on the other hand because this general law can be used to derive general versions of Burde’s and Scholz’s reciprocit...
متن کاملRational Points on Quartic Hypersurfaces
Let X be a projective non-singular quartic hypersurface of dimension 39 or more, which is defined over Q. We show that X(Q) is non-empty provided that X(R) is non-empty and X has p-adic points for every prime p.
متن کاملDominance of a Rational Map to the Coble Quartic
We show the dominance of the restriction map from a moduli space of stable sheaves on the projective plane to the Coble sixfold quartic. With the dominance and the interpretation of a stable sheaf on the plane in terms of hyperplane arrangements, we expect these tools to reveal the geometry of the Coble quartic.
متن کاملRational points on diagonal quartic surfaces
We searched up to height 107 for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1988
ISSN: 0035-7596
DOI: 10.1216/rmj-1988-18-1-105